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ON THE GLOBAL STABILITY OF THE FORCED MOTIONS OF A LIQUID WITHIN ANELLIPSOID' 

G.A. LEONOV and A.V. MOROZOV 

Under certain conditions the rotation of the liquid in a liquid gyroscope around the 
central axis of an ellipsoid loses stability /l-4/. This occurs, for example, in the case 
when the moment of the external forces directed along the central axis exceeds a certain 
critical (bifurcational) value. The aim of this paper is to obtain the sufficient conditions 
for global asymptotic stability /5/ which, at the same time, give rise to stationary motions 
of the liquid around the principal axes of the ellipsoid. In solving this problem, use is 
made of the ideas, methods and results described in /l, 2, 5-9/**.(**See also Yudovich V.I., 
Asymptotic form of the limiting cycles of a Lorenz system at large Rayleigh numbers. Rostov- 
on-Don, 1977: Deposited in the All-Union Inst. for Scientific and Technical Information 
(vINIT), 2611-78,'31.07.78.) 

We know that, when there is a sufficiently strong action on the central axis of a 
gyroscope, there are two stationary rotations which differ in the directions of the liquid 
flow around the stable axes /l, 8/. A theoretical treatment of the stability of the motions 
has only previously been carried out when there are small deviations from the stationary flows 
/l-4, 10, 11/, that is, the Lyapunov stability or the stability under the assumption that the 
constant external and dissipative moments were small /12/ has been analysed. The global 
asymptotic stability of the above-mentioned stationary motions is investigated below. The 
term "global asymptotic stability" is analogous to the term "stability on the whole" and is 
employed in the analysis of systems with a non-unique equilibrium position /5, 13/. 

Let us consider the system of equations 

containing continuously differentiable functions and where ~((a,$11 >)~q*, VOE RI for certain 
P > 0. 

Many problems in the theory of synchronous machines /7, 14/ and of non-linearoscillators 
with an automatic regulator /8, 15/ lead to an analysis of equations of the form of (I). It 
is well-known that a Lorenz system as well as a liquid gyroscope system which is forced along 
an unstable axis can be reduced to system (1) /6, 8/. The Lorenz model also describes the 
motion of a "liquid gyroscope" in the field of Coriolis forces in the case when the ellipsoid 
containing the liquid is an ellipsoid of rotation /ll/. 

We shall say that system (1) is globally and asymptotically stable if any solution of 
this system X (4 = co1 {o (!),q (t), r(f)} tends, as t--$-m , to a certain equilibrium position /5/, 
while it is stableas awhole ifit has a single equilibrium position and is globally asymp- 
totically stable /13/ and dissipative in the Levinson sense, if a bounded, closed domain of 
attraction exists in the phase space o,~,z and z /16/. Systems of the hydrodynamic type /l/ 
constitute a well-known class of systems which are dissipative according to Levinson and the 
simplest model of this class is considered below. 

We shall assume that the following two conditions are satisfied. lo. Any solution of 
system (1) is infinitely extendible to the right (in particular, if system (1) is Levinson- 
dissipative, this assumption is satisfied). 2O. The stationary set of system (1) /5/ 
consists of isolated points. 

The following theorem generalizes the results of /6/ for system (1). 

Theorem 1. If, in the case of a certain number cr> o and a bounded solution X(1) system 
(1) satisfies the inequality 

then it tends to one of the equilibrium positions. 

Proof. Let X(1.X0) be a bounded solution of system (1) which satisfies inequality (2) 
for a certain a>O. Let us consider the Lyapunov function 
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By virtue of system (l), the estimate 

holds for an arbitrary function W(X). 

It can be seen from this that W'(X)<0 when inequality (2) is satisfied. Then, on the 
trajectory X(I. X,) of system (l), the function W(X(r,X,)) does not increase with respect to 
t in a certain interval (?,-!-a~). It follows from this and from the boundedness of W(X(t,X,)) 

that a finite limit lim W(X(t,X,))-= m exists as t-+00. The subsequent proof repeats exactly 

the proof of the theorem in /6/. 

The theorem which has been proved in conjunction with the estimates of the domains cf 

dissipation leads totheconditions for global asymptotic stability. 

Let us now consider the system of transformed equations for a forced liquid gyroscope 

allowing for disspation /l, S/ 

II' = u,p - ila - Ir, + F, 
(3) 

y; = --“,&I, - ly,. II’ = qz, - 12, 

Here F0 is the constant moment of the external forces acting along the central axis of 

the ellipsoid and 1 is the dissipation parameter (the friction is assumed to be isotropic). 

Let us now introduce a new variable, the energy of the system 

into the treatment. 

Differentiating (4)) by virtue of system (3), we have 

+' = -212, + Fpz, (5) 

By differentiating the first equation of system (3) and making use of the two other 

equations and the function (4), we obtain 

r," = 2x13 - (42, -t- 2+?, - 31r; + 21F, ('3) 
Now, by putting 

z, = 0, I,' = a' = q, z0 = z -+- ‘i,FJ-‘o 

in (5) and (6), we arrive at system (l), where 

9 (0, q) = 3111, A = 22, g (a) = ll,F,l-’ 

f (0) = 40, 'p (0) = 21-r (2' - o')(lo - F,) 

By putting p = 32, we arrive at the following assertion. 

Corollary 1. It follows from Theorem 1 that, if a bounded solution of system (3) 

satisfies the condition 

then it tends to one of the equilibrium positions. 

By means of the substitution (similar to the substitution in /l/) 

we reduce system (3) to the form 

I' = --k + yz 0) 

,,' = -_ly - F$-% - .a. I’ = --Ir - F,l-‘y - zy 

When F, 6 la , system (8) has a single equilibrium position C,(O.O.O) which corresponds 

to a unique stationary motion of the liquid. When PO> 1', there are three stationary 

motions: C, and C,,,(l- P&r, -&tin +vm). 
Stationary motions whichdiffer in their directions of rotation around the stable axes 

physically correspond to the equilibrium positions c,and C, /l/. 
In order to prove the dissipation properties of system (6) and to obtain actual estimates 

of its domain, we introduce the function V and the number r into the treatment: 

(I -a.)‘& v=s+qz+e*, I-= ier(l_A) 

(‘3 = W, - l(1 - A)], A E (0, I)) 
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Lemma 1. the inequality 

holds for any solution of system (8). 

(9) 

Proof. We have 
v'+2Av=-2((1-++ &;"',"I'+ 

(1 -2A)'W 
8 (I-A) -(I- A)(# + t)'< 2Ar 

Let us represent this inequality .in the form 

(V - I').@'+ 2A(V - r)eas' 60 

After integration from 0 to t,,we obtain 

v (2 (t,), Y (II), 2 (tl)) - r 6 [V (I (O), Y (0). z (0)) - rb-fi*t 
The latter holds for any tl>/O which proves the assertion of the lemma. 

Corollary 2. It follows from inequality (9) that the estimate 

holds for any solution of system (8). 
By comparing (7) and (10) and, at the same time, putting a= 21/z A= I/2, we arrive at 

the following assertion. 

Corollary 3. If the moment of the external forces F, and the dissipation parameter 2 
satisfy the inequality F,>fit', system (3) is globally asymptotically stable. 

By introducing the Reynolds number R = F,/P which is defined with respect tothepressure 
/l/, we finally conclude that, when R<i, the liquid gyroscope system (3) is stable as a 
whole but, when i<R<f/8, it is globally asymptotically stable. 

Thus, the simplest three-mode Galerkin approximation of the equations describing the 
motion of a liquid in an ellipsoidal cavity in the field of an action which is constant along 
an unstable axis has been considered. It has previousy been proved /l-4/ that, in such a 
system, non-unique equilibrium positions occur when R>i: one is unstable and two are 
Lyapunov-stable. However, as we know, the existence of equilibrium positions in a system 
which are Lyapunov-stable does not preclude the existence of attractors of other types such 

as, for examples, limiting cycles. The condition obtained here separates out a domain in 
the parameter space in which the liquid gyroscope system (3) is globally asymptotically stable. 
When this condition is realized, the physical system, for any initial perturbations, tends, 
as L-joo, to one of the two possible stationary motions. 
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REACTION OF A PIEZOCERAMIC SHELL TO CONCENTRATED DYNAMICAL ACTIONS* 

L.A. FIL'SHTINSKII and L.A. KHIZHNYAK 

A solution of the equations of motion of an infinite, cylindrical piezoceramic shell, the 
facial surfaces of which are not covered by electrodes but subjected to a periodic system of 
concentrated forces varying harmonically with time, is constructed. Green's function method 
is used for this purpose. In the case of regular roots of the dispersion equation the unique 
solution is picked out on the basis of limiting absorption principle. The irregular roots 
determine the spectrum of resonance frequencies. An analytical and numerical analysis of the 
roots of the dispersion equation is carried out. A qualitative picture of the wave process 
is given. The results of a calculation of the amplitude-frequency characteristics of the 
displacement and the electric field potential are presented as well as a comparison with a 
non-electric shell. The free vibrations of Fiezoceramic shells are considered in /l, 2/ and 
the forced vibrations of such shells in /3, 41. 

1. Let us consider a cylindrical piezoceramic shell which is referred to the orthogonal 
coordinates a.@ and z, polarized along the 01 coordinate and loaded with a system of con- 
centrated forces which are periodic with respect to fi, and vary harmonically with time. The 
facial surfaces of the shell are free from electrodes and are bounded by a vacuum. When 
account is taken of the equations of state /5/, the equations for the steady-state vibrations 
of such a shell have the form 

.&uf z P& (a. B) t- 6iahO'UJ @.f) 
6, = 6, = -i, 6, = 1, 8, = 0, I, j = i, 2.3, 4 

Here, ~,(a,@ are the amplitudes of the displacements (i= i,2,3), u,= cp(a,@) is the electric 
field potential in the shell, 6(a,& is a two-dimensional Dirac function, o is the frequency, 
p and h are the density of the material and the thickness of the shell and PI is the amplitude 
of the corresponding concentrated force. 

The differential operators L&J are written out in /6/ and the coefficients occurring in 
them have the form 

Here, CfJ 
E are the coefficients of elasticity of the piezoceramic when the electric 

field is zero, %I' and e,,' are the permittivities when the stresses are zero and QJ* are 
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